editing disabled

Omnitetrachordal scales of the form 2L+ns -- a special case?

An OTC scale of this form (example: LssssLsssssss) has been confirmed for every scale size from 3 to 53 (except 4), and probably exists for any larger scale size as well. With the exception of the 3-, 5-, and 7-note scales, these patterns are not MOS.

In every case so far studied, the strings of 's' steps come in a small group and a large group. Let x be the number of 's' steps in the small group, and y the number of 's' steps in the large group. Then:
  • 9/8 = (y-x)s
  • 4/3 = L+xs
  • 3/2 = L+ys
  • If either x or y is odd, the scale has a symmetric mode (ex. sLsLs).
  • If both x and y are odd, there are two symmetric modes (ex. sLssssLs and ssLssLss).
  • If both x and y are even, no symmetric mode exists (ex. LsLsss).

As scale size increases:
  • y/x appears to converge on a value around 0.6 .
  • For odd size scales, the generator is large (at least 4/3 = 498 cents), and appears to approach sqrt(2) = 600 cents.
  • For even size scales, the period is 1/2 octave, and the generator is small, and appears to approach 1/1 = 0 cents.

Note the patterns in values of P:
  • P(3) = P(5)+1 = P(7)+2
  • P(6) = P(8)+1 = P(10)+2 = P(12a)+3
  • P(9) = P(11)+1 = P(13)+2 = P(15)+3 = P(17)+4
  • P(12b) = P(14)+1 = P(16)+2 = P(18)+3 = P(20)+4 = P(22)+5
  • P(19) = P(21)+1 = P(23)+2 = P(25)+3 = P(27)+4 = P(29)+5
  • etc.
These groups appear to share generators and temperaments.

For some scale sizes (12, 17, 22, 29, 34, 41, 46, 53, and possibly others), more than one class of OTC scale is possible! In such cases, the two will have different tetrachordal divisions (i.e. representing 4/3 with different numbers of steps). One version will have P very near 1, and the other will have a much higher value of P. Note that these scale sizes tend to correspond to EDOs that represent 4/3 and 3/2 with relatively high accuracy.

size
2L+_s
P
pattern
3
2L+s
2.4424745962
L s L (MOS)
5
2L+3s
1.4424745962
Ls s Ls (MOS)
6
2L+4s
3.8849491924
Ls ss Ls
7
2L+5s
0.4424745962
Lss s Lss (MOS)
8
2L+6s
2.8849491924
Lss ss Lss
9
2L+7s
5.3274237885
Lss sss Lss
10
2L+8s
1.8849491924
Lsss ss Lsss
11
2L+9s
4.3274237885
Lsss sss Lsss
12a
2L+10s
0.8849491924
Lssss ss Lssss
12b
2L+10s
6.7698983847
Lsss ssss Lsss
13
2L+11s
3.3274237885
Lssss sss Lssss
14
2L+12s
5.7698983847
Lssss ssss Lssss
15
2L+13s
2.3274237885
Lsssss sss Lsssss
16
2L+14s
4.7698983847
Lsssss ssss Lsssss
17a
2L+15s
1.3274237885
Lssssss sss Lssssss
17b
2L+15s
7.2123729809
Lsssss sssss Lsssss
18
2L+16s
3.7698983847
Lssssss ssss Lssssss
19
2L+17s
6.2123729809
Lssssss sssss Lssssss
20
2L+18s
2.7698983847
Lsssssss ssss Lsssssss
21
2L+19s
5.2123729809
Lsssssss sssss Lsssssss
22a
2L+20s
1.7698983847
Lssssssss ssss Lssssssss
22b
2L+20s
7.6548475771
Lsssssss ssssss Lsssssss
23
2L+21s
4.2123729809
Lssssssss sssss Lssssssss
24
2L+22s
6.6548475771
Lssssssss ssssss Lssssssss
25
2L+23s
3.2123729809
Lsssssssss sssss Lsssssssss
26
2L+24s
5.6548475771
Lsssssssss ssssss Lsssssssss
27
2L+25s
2.2123729809
Lssssssssss sssss Lssssssssss
28
2L+26s
4.6548475771
Lssssssssss ssssss Lssssssssss
29a
2L+27s
1.2123729809
Lsssssssssss sssss Lsssssssssss
29b
2L+27s
7.0973221733
Lssssssssss sssssss Lssssssssss
30
2L+28s
3.6548475771
Lsssssssssss ssssss Lsssssssssss
31
2L+29s
6.0973221733
Lsssssssssss sssssss Lsssssssssss
32
2L+30s
2.6548475771
Lssssssssssss ssssss Lssssssssssss
33
2L+31s
5.0973221733
Lssssssssssss sssssss Lssssssssssss
34a
2L+32s
1.6548475771
Lsssssssssssss ssssss Lsssssssssssss
34b
2L+32s
6.5397967694
Lssssssssssss ssssssss Lssssssssssss
35
2L+33s
4.0973221733
Lsssssssssssss sssssss Lsssssssssssss
36
2L+34s
6.5397967694
Lsssssssssssss ssssssss Lsssssssssssss
37
2L+35s
3.0973221733
Lssssssssssssss sssssss Lssssssssssssss
38
2L+36s
5.5397967694
Lssssssssssssss ssssssss Lssssssssssssss
39
2L+37s
2.0973221733
Lsssssssssssssss sssssss Lsssssssssssssss
40
2L+38s
4.5397967694
Lsssssssssssssss ssssssss Lsssssssssssssss
41a
2L+39s
1.0973221733
Lssssssssssssssss sssssss Lssssssssssssssss
41b
2L+39s
6.9822713656
Lsssssssssssssss sssssssss Lsssssssssssssss
42
2L+40s
3.5397967694
Lssssssssssssssss ssssssss Lssssssssssssssss
43
2L+41s
5.9822713656
Lssssssssssssssss sssssssss Lssssssssssssssss
44
2L+42s
2.5397967694
Lsssssssssssssssss ssssssss Lsssssssssssssssss
45
2L+43s
4.9822713656
Lsssssssssssssssss sssssssss Lsssssssssssssssss
46a
2L+44s
1.5397967694
Lssssssssssssssssss ssssssss Lssssssssssssssssss
46b
2L+44s
7.4247459618
Lsssssssssssssssss ssssssssss Lsssssssssssssssss
47
2L+45s
3.9822713656
Lssssssssssssssssss sssssssss Lssssssssssssssssss
48
2L+46s
6.4247459618
Lssssssssssssssssss ssssssssss Lssssssssssssssssss
49
2L+47s
2.9822713656
Lsssssssssssssssssss sssssssss Lsssssssssssssssssss
50
2L+48s
5.4247459618
Lsssssssssssssssssss ssssssssss Lsssssssssssssssssss
51
2L+49s
1.9822713656
Lssssssssssssssssssss sssssssss Lssssssssssssssssssss
52
2L+50s
4.4247459618
Lssssssssssssssssssss ssssssssss Lssssssssssssssssssss
53a
2L+51s
0.9822713656
Lsssssssssssssssssssss sssssssss Lsssssssssssssssssssss
53b
2L+51s
6.8672205580
Lssssssssssssssssssss sssssssssss Lssssssssssssssssssss
etc.

See also